Multivariate Log-Concave Distributions as a Nearly Parametric Model

Autor: Lutz Duembgen, Dominic Schuhmacher, Andre Huesler
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: Schuhmacher, Dominic; Hüsler, André; Dümbgen, Lutz (2009). Multivariate Log-Concave Distributions as a Nearly Parametric Model (Technical Report 74). Bern: Institut für mathematische Statistik und Versicherungslehre der Universität Bern (IMSV)
Schuhmacher, Dominic; Hüsler, André; Dümbgen, Lutz (2011). Multivariate Log-Concave Distributions as a Nearly Parametric Model. Statistics & risk modeling, 28(3), pp. 277-295. Berlin: Oldenbourg Wissenschaftsverlag GmbH 10.1524/stnd.2011.1073
Statistics and Risk Modeling
DOI: 10.1524/stnd.2011.1073
Popis: In this paper we show that the family P_d of probability distributions on R^d with log-concave densities satisfies a strong continuity condition. In particular, it turns out that weak convergence within this family entails (i) convergence in total variation distance, (ii) convergence of arbitrary moments, and (iii) pointwise convergence of Laplace transforms. Hence the nonparametric model P_d has similar properties as parametric models such as, for instance, the family of all d-variate Gaussian distributions.
Comment: updated two references, changed the local technical report number
Databáze: OpenAIRE