On Mersenne polynomials over F 2
Autor: | Olivier Rahavandrainy, Luis H. Gallardo |
---|---|
Přispěvatelé: | Département de Mathématiques [Brest], Université de Brest (UBO) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Algebra and Number Theory
Mathematics::General Mathematics Mathematics::Number Theory Applied Mathematics 010102 general mathematics Mersenne prime General Engineering Field (mathematics) 0102 computer and information sciences Trinomial 01 natural sciences Theoretical Computer Science Combinatorics Factorization Integer 010201 computation theory & mathematics 0101 mathematics [MATH]Mathematics [math] Mathematics |
Zdroj: | Finite Fields and Their Applications Finite Fields and Their Applications, Elsevier, 2019, 59, pp.284-296. ⟨10.1016/j.ffa.2019.06.006⟩ |
ISSN: | 1071-5797 1090-2465 |
DOI: | 10.1016/j.ffa.2019.06.006⟩ |
Popis: | We work over the field with two elements. We establish a new correspondence between Mersenne polynomials and trinomials so that corresponding polynomials have the same number of irreducible factors. This allows us to get a partial but nontrivial result about the factorization of M 2 h + 1 + 1 , for a Mersenne prime M and for a positive integer h. |
Databáze: | OpenAIRE |
Externí odkaz: |