Identification of representative anisotropic material properties accounting for friction and preloading effects: a contribution for the modelling of structural dynamics of electric motor stators
Autor: | Pierre Millithaler, Jean-Baptiste Dupont, Emeline Sadoulet-Reboul, Morvan Ouisse, Noureddine Bouhaddi |
---|---|
Přispěvatelé: | Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Vibratec (Vibratec) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Electric motor
0209 industrial biotechnology Materials science superelement friction Aerospace Engineering 02 engineering and technology electric machine stator Homogenization (chemistry) [SPI]Engineering Sciences [physics] 020901 industrial engineering & automation 0203 mechanical engineering General Materials Science Anisotropy homogenisation business.industry Mechanical Engineering laminated structures Structural engineering [PHYS.MECA]Physics [physics]/Mechanics [physics] Physics::Classical Physics 020303 mechanical engineering & transports representative medium Mechanics of Materials Automotive Engineering Superelement business Material properties preloading |
Zdroj: | Journal of Vibration and Control Journal of Vibration and Control, SAGE Publications, 2018, 24 (2), pp.237-259 Journal of Vibration and Control, SAGE Publications, 2016, ⟨10.1177/1077546316637941⟩ |
ISSN: | 1077-5463 |
DOI: | 10.1177/1077546316637941⟩ |
Popis: | International audience; Simulating the dynamic behaviour and determining equivalent material properties for anisotropic models, superele-ments or structures subjected to preloads or friction remains a challenging issue. Amongst other practical applications, modelling interactions between the steel sheets in industrial magnetic cores of electric motor stators is a complex task as it requires anticipating behavioural heterogeneities in the structure and possibly represents significantly costly operations for performing modal or dynamic response simulations. In this article, a method for identifying equivalent material properties to anisotropic structures is developed, able to take into account the influence of preloads and friction on the material properties, later used in structural dynamics simulations. The proposed approach can be used with superelements, converting stiffness matrices into elasticity matrices. The method is first applied to a triclinic model, and recreates its elasticity matrix with little derivation. Then, an equivalent linear material is computed for a continuous structure under preloading. Compared at low frequencies, the vibration behaviour of the preloaded structure and its equivalent effective media are in good agreement. The operation is repeated with a laminated stack under preload-ing. Again, the modal behaviour of the equivalent structure shows good accuracy compared to the initial preloaded stack. Finally, the magnetic core of an electric machine stator is modelled with equivalent anisotropic material properties , accounting for friction and preload in the yoke's and the teeth's steel sheets. The simulation of the structure's low-frequency radial vibration modes is satisfying, and shows improvement compared to orthotropic properties. |
Databáze: | OpenAIRE |
Externí odkaz: |