Cosine polynomials with few zeros

Autor: Tomas Juškevičius, Julian Sahasrabudhe
Přispěvatelé: Apollo - University of Cambridge Repository
Rok vydání: 2021
Předmět:
Zdroj: Bulletin of the London Mathematical Society, Hoboken : Wiley, 2021, vol. 53, iss. 3, p. 877-892
ISSN: 1469-2120
0024-6093
DOI: 10.1112/blms.12468
Popis: In a celebrated paper, Borwein, Erd\'elyi, Ferguson and Lockhart constructed cosine polynomials of the form \[ f_A(x) = \sum_{a \in A} \cos(ax), \] with $A\subseteq \mathbb{N}$, $|A|= n$ and as few as $n^{5/6+o(1)}$ zeros in $[0,2\pi]$, thereby disproving an old conjecture of J.E. Littlewood. Here we give a sharp analysis of their constructions and, as a result, prove that there exist examples with as few as $C(n\log n)^{2/3}$ roots.
Comment: 17 pages. A few typos fixed
Databáze: OpenAIRE