Small $C^1$ actions of semidirect products on compact manifolds

Autor: Christian Bonatti, Thomas Koberda, Sang-hyun Kim, Michele Triestino
Přispěvatelé: Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Centre National de la Recherche Scientifique (CNRS), School of Mathematics (KIAS Séoul), Korea Institute for Advanced Study (KIAS), University of Virginia [Charlottesville], ANR-19-CE40-0007,Gromeov,Groupes d'homéomorphismes de variétés(2019)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Pure mathematics
37D30
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
Cyclic group
Dynamical Systems (math.DS)
Group Theory (math.GR)
01 natural sciences
[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]
57M60
$C^1$–close to the identity
Mathematics - Geometric Topology
Primary 37C85. Secondary 20E22
57K32

[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]
0103 physical sciences
Mapping torus
FOS: Mathematics
57R35
20E22
0101 mathematics
Abelian group
Mathematics - Dynamical Systems
Mathematics
37C85
010102 general mathematics
Geometric Topology (math.GT)
groups acting on manifolds
Riemannian manifold
Surface (topology)
57M50
fibered $3$–manifold
hyperbolic dynamics
Unit circle
Monodromy
010307 mathematical physics
Geometry and Topology
Finitely generated group
Mathematics - Group Theory
Zdroj: Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2020, 20 (6), pp.3183-3203. ⟨10.2140/agt.2020.20.3183⟩
Algebr. Geom. Topol. 20, no. 6 (2020), 3183-3203
ISSN: 1472-2747
1472-2739
DOI: 10.2140/agt.2020.20.3183⟩
Popis: Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eigenvalues of modulus one. We thus generalize a result of A. McCarthy, which addressed the case of abelian--by--cyclic groups acting on compact manifolds.
Comment: 11 pages; final version to appear in Algebraic & Geometric Topology
Databáze: OpenAIRE