Decoupling of the many-body effects from the electron mass in GaAs by means of reduced dimensionality

Autor: P. M. T. Vianez, Y. Jin, W. K. Tan, Q. Liu, J. P. Griffiths, I. Farrer, D. A. Ritchie, O. Tsyplyatyev, C. J. B. Ford
Přispěvatelé: Vianez, PMT [0000-0003-2245-6108], Liu, Q [0000-0002-8583-0606], Apollo - University of Cambridge Repository
Rok vydání: 2023
Předmět:
DOI: 10.17863/cam.93968
Popis: Determining the (bare) electron mass $m_0$ in crystals is often hindered by many-body effects since Fermi-liquid physics renormalises the band mass, making the observed effective mass $m^*$ depend on density. Here, we use a one-dimensional (1D) geometry to amplify the effect of interactions, forcing the electrons to form a nonlinear Luttinger liquid with separate holon and spinon bands, therefore separating the interaction effects from $m_0$. Measuring the spectral function of gated quantum wires formed in GaAs by means of magnetotunnelling spectroscopy and interpreting them using the 1D Fermi-Hubbard model, we obtain $m_0=(0.0525\pm0.0015)m_\textrm{e}$ in this material, where $m_\textrm{e}$ is the free-electron mass. By varying the density in the wires, we change the interaction parameter $r_\textrm{s}$ in the range from $\sim$1-4 and show that $m_0$ remains constant. The determined value of $m_0$ is $\sim 22$% lighter than observed in GaAs in geometries of higher dimensionality $D$ ($D>1$), consistent with the quasi-particle picture of a Fermi liquid that makes electrons heavier in the presence of interactions.
13 pages, 9 figures
Databáze: OpenAIRE