Investigating the uptake and fate of poly- and perfluoroalkylated substances (PFAS) in sea ice using an experimental sea ice chamber
Autor: | Ralf Ebinghaus, Max Thomas, O. Crabeck, Amber Leeson, Crispin J. Halsall, Jan Kaiser, Jack Garnett, Peter M. Wynn, Hanna Joerss |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
chemical enrichment
PFAS Artificial seawater biological exposure 010501 environmental sciences 01 natural sciences Article Arctic Brining Sea ice Environmental Chemistry Cryosphere Ice Cover Seawater 14. Life underwater Meltwater 0105 earth and related environmental sciences Fluorocarbons geography geography.geographical_feature_category Arctic Regions General Chemistry sea ice brine Salinity 13. Climate action Environmental chemistry Environmental science Environmental Monitoring |
Zdroj: | Environmental Science & Technology Garnett, J.; Halsall, C.; Thomas, M.; Crabeck, O.; France, J.; Joerss, H.; Ebinghaus, R.; Kaiser, J.; Leeson, A.; Wynn, P.: Investigating the Uptake and Fate of Poly-and Perfluoroalkylated Substances (PFAS) in Sea Ice Using an Experimental Sea Ice Chamber. In: Environmental Science and Technology. Vol. 55 (2021) 14, 9601-9608. (DOI: /10.1021/acs.est.1c01645) |
ISSN: | 0013-936X |
DOI: | 10.1021/acs.est.1c01645# |
Popis: | Poly- and perfluoroalkyl substances (PFAS) are contaminants of emerging Arctic concern and are present in the marine environments of the polar regions. Their input to and fate within the marine cryosphere are poorly understood. We conducted a series of laboratory experiments to investigate the uptake, distribution, and release of 10 PFAS of varying carbon chain length (C4–C12) in young sea ice grown from artificial seawater (NaClsolution). We show that PFAS are incorporated into bulk sea ice during ice formation and regression analyses for individual PFAS concentrations in bulk sea ice were linearly related to salinity (r2 = 0.30 to 0.88, n = 18, p < 0.05). This shows that their distribution is strongly governed by the presence and dynamics of brine (high salinity water) within the sea ice. Furthermore, long-chain PFAS (C8–C12), were enriched in bulk ice up to 3-fold more than short-chain PFAS (C4–C7) and NaCl. This suggests that chemical partitioning of PFAS between the different phases of sea ice also plays a role in their uptake during its formation. During sea ice melt, initial meltwater fractions were highly saline and predominantly contained short-chain PFAS, whereas the later, fresher meltwater fractions predominantly contained long-chain PFAS. Our results demonstrate that in highly saline parts of sea ice (near the upper and lower interfaces and in brine channels) significant chemical enrichment (ε) of PFAS can occur with concentrations in brine channels greatly exceeding those in seawater from which it forms (e.g., for PFOA, εbrine = 10 ± 4). This observation has implications for biological exposure to PFAS present in brine channels, a common feature of first-year sea ice which is the dominant ice type in a warming Arctic. Poly- and perfluoroalkyl substances (PFAS) are contaminants of emerging Arctic concern yet their fate and behavior in the marine cryosphere is poorly understood. Here, laboratory experiments show that PFAS are incorporated into bulk sea ice during ice formation leading to significant chemical enrichment in brine. This has implications for biological exposure to PFAS in first-year sea ice which is the dominant ice type in a warming Arctic. |
Databáze: | OpenAIRE |
Externí odkaz: |