Popis: |
Die Automobilindustrie befindet sich in einem Wandel. Zukünftige Fahrzeuge sind elektrisch, autonom, vernetzt, werden geteilt und regelmäßig aktualisiert. Die Auswirkung davon ist ein starkes Wachstum der Software in zukünftigen Fahrzeugen, das vor allem auf die Implementierung von autonomen Fahrerverhalten und herstellerspezifischen Betriebssystemen zurückzuführen ist. Zur sicheren Ausführung dieser Software werden leistungsstarke Zentralrechner benötigt. Daneben führen ein steigender Bedarf an Sicherheitsmechanismen gegen Cyberangriffe, der Einzug von Leistungselektronik und die notwendige Gewährleistung der Ausfallsicherheit zu einem Anstieg der Komplexität bei der Entwicklung von automobilen Elektrik/Elektronik-Architekturen (E/E-Architekturen). Im Bereich der Leistungselektronik liegt dies etwa an der benötigten Realisierung einer galvanischen Trennung zwischen Hochvolt- und Niedervoltnetz, um die Unversehrtheit der Insassen zu gewährleisten. Außerdem erfordert der Einsatz von permanenterregten Synchronmaschinen die sichere Auslegung und das Design entsprechender Schaltungen zur Ansteuerung. Cyberangriffe erfordern hingegen Mechanismen zur Abwehr und Gewährleistung der Informationssicherheit. Dazu zählen präventive Firewalls oder proaktive Angriffserkennungssysteme. Eine Ausfallsicherheit wird dagegen durch Komponenten- oder Informationsredundanz ermöglicht. Um entsprechende Ausfallmaßnahmen einzuleiten, kann zusätzlich die Implementierung eines entsprechenden Monitorings nötig sein. Im Zuge des Wandels wachsen die E/E-Architekturmodelle und weisen einen höheren Vernetzungsgrad auf. Dadurch haben E/E-Architekten mehr Designentscheidungen zu treffen, wobei Lösungen mehr Freiheitsgrade aufweisen und Auswirkungen schwieriger zu beurteilen sind. Jedoch müssen frühestmöglich im Entwicklungsprozess überprüfbar richtige Entscheidungen getroffen werden. Die Einführung frühzeitiger Tests in zukünftigen Zulassungsprozessen gibt dieser Anforderung ein weiteres Gewicht. In existierenden Arbeiten wurde gezeigt, dass eine in E/E-Architekturentwicklungswerkzeugen integrierte Simulationen einen Mehrwert für E/E-Architekten bei der frühzeitigen Findung von Designentscheidungen bietet. In dieser Arbeit werden dagegen die Grenzen der Skalierbarkeit einer solchen Simulation untersucht. Dies geschieht mithilfe von industriell relevanten Anwendungsfällen. Ein bestehender Ansatz zur automatisierten Synthese von Simulationsmodellen aus PREEvision-E/E-Architekturmodellen wird dabei unter Berücksichtigung der Anforderungen bei großmaßstäblichen Modellen erweitert und angepasst. Hierzu werden zunächst Simulatoren hinsichtlich ihrer Eignung für einen Einsatz im industriellen Umfeld untersucht. Dies erfolgt anhand in der Arbeit definierten Auswahlkriterien sowie mithilfe von synthetischen und skalierbaren Benchmarks. Im Anschluss werden Konzepte untersucht, welche die Erhöhung der Skalierbarkeit einer E/E-Architektursimulation adressieren. Zu den Aspekten der Skalierbarkeit gehören neben der Performanz auch die Anwendbarkeit und die Validierbarkeit, welche von der Emergenz generierter Modelle beeinflusst werden. Als Lösung werden in dieser Arbeit ausführbare Szenarienmodelle zur zustandsabhängigen Generierung von Stimuli und der reaktiven Evaluierung von Signalwerten verwendet. Durch deren Schnittstellen können gezielt die für einen Anwendungsfall relevanten Modellkomponenten der E/E-Architektur identifiziert werden, welche in Summe das sogenannte “System of Interest“ bilden. Auf diese Weise kann die Simulationsmodellgröße reduziert werden. Darüber hinaus werden parametrisierbare, pre-validierte und performanzoptimierte Teilmodelle, sogenannte „Templates“, bei der Generierung verwendet. Neben einer manuellen Zuweisung der Templates zu E/E-Architekturmodellkomponenten über die in dieser Arbeit verwendeten Template And Layer Integration Architecture (TALIA), haben spezifische Komponenten auf der Leistungssatzebene, wie Batterien, Stecker oder Kabel, bereits Standard-Templates zugewiesen. Simulationsmodelle können dadurch ohne manuelle Verhaltensmodellierung und zugehörige Validierung generiert werden. Damit Standard-Templates verwendet werden können, wird eine Hardware-zentrierte Abbildung verfolgt. Die physikalische E/E-Architektur aus der Realität bildet dabei die Grundlage für die generierten Simulationsmodelle. Softwaremodelle werden ergänzend über die Modelle der Steuergeräte bzw. ECUs integriert. Ebenso sind die Szenarienmodelle nach der Generierung ein Teil der Simulationsmodelle. Damit findet die Integration unterschiedlicher E/E-Architekturebenen statt, wodurch hybride Simulationsmodelle entstehen. Für die Evaluation werden Anwendungsfälle für Simulationen aus möglichen Designentscheidungsfragen abgeleitet und anhand definierter Kriterien für die weitere Betrachtung ausgewählt. Designentscheidungsfragen ergeben sich beim Technologieentscheid, der Dimensionierung von Komponente oder bei Optimierungen. Die Anwendungsfälle bestimmen das benötigte Testmodell, bestehend aus dem zu evaluierenden System of Interest und dem Prüfstandmodell, realisiert als Szenariomodell. Da das Testmodell die Basis des Simulationsmodells bildet und damit dessen Komplexität bestimmt, lässt sich anhand der Anwendungsfälle die Skalierbarkeit der E/E-Architektursimulation beurteilen. Insbesondere wird in dieser Arbeit der Einfluss emergenter Modelleigenschaften auf die Skalierbarkeit untersucht. |