Symmetry properties of stable solutions of semilinear elliptic equations in unbounded domains

Autor: Samuel Nordmann
Přispěvatelé: Centre d'Analyse et de Mathématique sociales (CAMS), École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Calculus of Variations and Partial Differential Equations
Calculus of Variations and Partial Differential Equations, Springer Verlag, In press
ISSN: 0944-2669
1432-0835
Popis: We consider stable solutions of a semilinear elliptic equation with homogeneous Neumann boundary conditions. A classical result of Casten, Holland and Matano states that all stable solutions are constant in convex bounded domains. In this paper, we examine whether this result extends to unbounded convex domains. We give a positive answer for stable non-degenerate solutions, and for stable solutions if the domain $$\Omega $$ further satisfies $$\Omega \cap \{\vert x\vert \le R\}= O(R^2)$$ , when $$R\rightarrow +\infty $$ . If the domain is a straight cylinder, an additional natural assumption is needed. These results can be seen as an extension to more general domains of some results on De Giorgi’s conjecture. As an application, we establish asymptotic symmetries for stable solutions when the domain satisfies a geometric property asymptotically.
Databáze: OpenAIRE