Autor: |
Dadfar, Seyed, Camozzi, Denise, Milita Darguzyte, Roemhild, Karolin, Varvarà, Paola, Josbert Metselaar, Banala, Srinivas, Straub, Marcel, Güvener, Nihan, Engelmann, Ulrich, Slabu, Ioana, Buhl, Miriam, Leusen, Jan Van, Kögerler, Paul, Hermanns-Sachweh, Benita, Schulz, Volkmar, Kiessling, Fabian, Lammers, Twan |
Rok vydání: |
2020 |
DOI: |
10.6084/m9.figshare.11759733 |
Popis: |
Additional file 1: Figure S1. Zeta potential analysis of the crude, C1-C5, Resovist® and Sinerem® samples. Figure S2. Cell viability of NIH3T3 cells treated with the samples with various concentrations ofSPION for 4 h according to XTT assay. The data were normalized to control value (SPION-freemedia), which was set as 100% cell viability. Experiments were performed at different concentrationsof SPION in the range of 0.1 to 10.0 mM. Values represent means ± standard deviations of fiveidentical experiments made in three replicates. Figure S3. LDH leakage of NIH3T3 cells treated with the samples with various concentrations ofSPION for 4 h according to the manufacturer’s instructions. Experiments were done at differentconcentrations of SPION in the range of 0.1 to 10.0 mM. Values represent mean ± standard deviationof five identical experiments made in three replicates. Figure S4. ROS generated in NIH3T3 cells incubated with the samples with various concentrations ofSPION to the control cells (SPION-free media) after 24 h treatment. Experiments were done atdifferent concentrations of SPION in the range of 0.1 to 5 mM. Data represent mean ± standarddeviation of three identical experiments made in three replicates. Figure S5. Colloidal stability of the samples in undiluted FBS monitored by visual inspection andDLS. Visual inspection indicated no aggregation up until 24 h. In line with this, size and PDI obtainedby DLS also showed no significant changes at 24 h. The iron concentration for all the samples was 5mM. The FBS size according to DLS was 19.7±1.5 nm which is very close to hydrodynamic diameterof C1. Also, FBS is polydisperse and has PDI of 0.49±0.05. These two notions explain the high PDI forC1 in FBS. Figure S6. Colloidal stability of the samples in 4 wt% BSA in DI water. Visual inspection showed noaggregation at 24 h. Also, size and PDI obtained by DLS showed no important differences in theirvalues at 24 h. The iron concentration for all the samples was 5 mM. Figure S7. Temperature-dependent magnetization at 1000 Oe of the crude SPION mixture (C), thesize-isolated samples C1-C5, Resovist® (R) and Sinerem® (S). Results were normalized to Fe content. Figure S8. T1- and T2-weighted MR images of the crude, C1-C5, Resovist® and Sinerem® samples atdifferent concentrations from 0.005 to 0.05 mM. Figure S9. Longitudinal (1/T1; a) and transverse (1/T2; b) relaxation rates of the crude, C1-C5,Resovist® and Sinerem® samples as a function of concentration of Fe. The straight lines represent thelinear fit to the experimental data. The relaxivities r1 and r2 were calculated as the slope of the linesfitted to the experimental data. Values represent average of one experiment made in three replicates. Figure S10. Relaxivity ratios (r2/r1) for the crude, C1-C5, Resovist® and Sinerem® samples. Figure S11. Normalized SNR values of the samples from the 4th up to the 10th harmonic of the MPIdrive field. Figure S12. Magnetic particle imaging of size-isolated SPION. (a) MPI images reconstructed basedon “V” shaped phantoms filled with the crude sample, C2 and Resovist®. (b) The intensity line profilesof the red marked lines through the phantoms in panel (a) are shown. The line profiles show the voxelintensity along the marked line and demonstrate a doubling of signal intensity for C2 in comparison toResovist®. Table S1. Overview of the results obtained in the size analyses performed using TEM, DLS and NTA.The different SPION formulations were evaluated in different media and upon different storage times. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|