Uniform Stability of a Finite Difference Scheme for Transport Equations in Diffusive Regimes
Autor: | Axel Klar, Andreas Unterreiter |
---|---|
Rok vydání: | 2002 |
Předmět: |
Numerical Analysis
Partial differential equation stability uniformly in the mean free path Applied Mathematics Numerical analysis Courant–Friedrichs–Lewy condition Mathematical analysis Finite difference method asymptotic preserving numerical scheme Stability (probability) Computational Mathematics msc:35F10 CFL type conditions ddc:510 Diffusion (business) Convection–diffusion equation Computer Science::Formal Languages and Automata Theory Linear equation linear transport equation Mathematics |
Zdroj: | SIAM Journal on Numerical Analysis. 40:891-913 |
ISSN: | 1095-7170 0036-1429 |
DOI: | 10.1137/s0036142900375700 |
Popis: | An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a linear transport equation is investigated. The scheme is adopted from a class of schemes developed in [S. Jin, L. Pareschi, and G. Toscani, SIAM J. Numer. Anal., 38 (2000), pp. 913--936] and [A. Klar, SIAM J. Numer. Anal., 35 (1998), pp. 1073--1094]. Stability is proven uniformly in the mean free path under a CFL-type condition turning into a parabolic CFL condition in the diffusion limit. |
Databáze: | OpenAIRE |
Externí odkaz: |