Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress

Autor: Gianni Bellocchi, H. Ben Touhami
Přispěvatelé: UR 0874 Unité de recherche sur l'Ecosystème Prairial, Institut National de la Recherche Agronomique (INRA)-Unité de recherche sur l'Ecosystème Prairial (UREP)-Ecologie des Forêts, Prairies et milieux Aquatiques (EFPA), Institut National de la Recherche Agronomique (INRA), MACSUR
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Ecological Informatics
Ecological Informatics, Elsevier, 2015, 30, pp.356-364. ⟨10.1016/j.ecoinf.2015.09.009⟩
ISSN: 1574-9541
DOI: 10.1016/j.ecoinf.2015.09.009⟩
Popis: As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables. (C) 2015 Elsevier B.V. All rights reserved.
Databáze: OpenAIRE