Lower Bounds for Possibly Divergent Probabilistic Programs

Autor: Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Naijun Zhan
Rok vydání: 2023
Předmět:
Zdroj: Proceedings of the ACM on programming languages 7(OOPSLA1), 99 (2023). doi:10.1145/3586051
International Conference on Object-Oriented Programming Systems, Languages, and Applications, OOPSLA 2023, Cascais, Portugal, 2023-10-23-2023-10-27
DOI: 10.48550/arxiv.2302.06082
Popis: We present a new proof rule for verifying lower bounds on quantities of probabilistic programs. Our proof rule is not confined to almost-surely terminating programs -- as is the case for existing rules -- and can be used to establish non-trivial lower bounds on, e.g., termination probabilities and expected values, for possibly divergent probabilistic loops, e.g., the well-known three-dimensional random walk on a lattice.
Comment: Paper conditionally accepted by OOPSLA 2023
Databáze: OpenAIRE