On learning evidential contextual corrections from soft labels using a measure of discrepancy between contour functions

Autor: Frédéric Pichon, Siti Mutmainah, Samir Hachour, David Mercier
Přispěvatelé: Laboratoire de Génie Informatique et d'Automatique de l'Artois (LGI2A), Université d'Artois (UA), UIN Sunan Kalijaga, Yogyakarta, Indonesia, Mercier, David
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: 13th International Conference on Scalable Uncertainty Management, SUM 2019
13th International Conference on Scalable Uncertainty Management, SUM 2019, Dec 2019, Compiègne, France
Lecture Notes in Computer Science ISBN: 9783030355135
SUM
Popis: International audience; In this paper, a proposition is made to learn the parameters of evidential contextual correction mechanisms from a learning set composed of soft labelled data, that is data where the true class of each object is only partially known. The method consists in optimizing a measure of discrepancy between the values of the corrected contour function and the ground truth also represented by a contour function. The advantages of this method are illustrated by tests on synthetic and real data.
Databáze: OpenAIRE