Evaluation of affinity interaction between small molecules and platelets by open tubular affinity capillary electrochromatography

Autor: Qi-Hui Zhang, Yin-Zhen Wang, Yuanjia Hu, Zhining Xia, Feng-Qing Yang, Qian Zhang, Chun-Hong Li, Feng-Qin Wang
Rok vydání: 2015
Předmět:
Zdroj: ELECTROPHORESIS. 37:736-743
ISSN: 0173-0835
Popis: In this paper, an open tubular affinity capillary electrochromatography (OT-ACEC) was developed by physical adsorption of rabbit platelets on the inner surface of capillary. The interactions between small molecules include adenosine diphosphate (ADP) (positive control), protocatechuic acid (negative control) and seven natural products (salvianolic acid B, salvianic acid A sodium, hydroxysafflor yellow A, ferulic acid, chlorogenic acid, sinapic acid, caffeic acid) and platelets were evaluated by their retention factors and binding constants obtained based on peak-shift assay. Then, the activities of anti-platelet aggregation induced by thrombin (THR), ADP and arachidonic acid (AA) for those small molecules (except ADP) were evaluated by turbidimetric method. The results indicate that: (i) ADP, a platelet aggregation inducer, had strong interaction with platelet, while protocatechuic acid that had no inhibition on platelet aggregation behaved no specific interaction; (ii) there was a positive correlation between the anti-platelet aggregation activities of small molecules and their interactions with platelet, generally those compounds with higher binding constants with platelet exhibited higher activities. Therefore, the OT-ACEC method developed in the present study can be a potential method to evaluate affinity interactions between small molecules and platelets, so as to predict the biological activities such as anti-platelet aggregation for the small molecules.
Databáze: OpenAIRE