Report on the finiteness of silting objects
Autor: | Takahiro Honma, Qi Wang, Takuma Aihara, Kengo Miyamoto |
---|---|
Rok vydání: | 2020 |
Předmět: |
Computer science
General Mathematics 010102 general mathematics Object (grammar) 0102 computer and information sciences Mathematics - Rings and Algebras 01 natural sciences Algebra 010201 computation theory & mathematics Rings and Algebras (math.RA) Mathematics::Category Theory FOS: Mathematics 0101 mathematics Algebra over a field Representation Theory (math.RT) Mathematics - Representation Theory |
DOI: | 10.48550/arxiv.2002.08534 |
Popis: | We discuss the finiteness of (two-term) silting objects. First, we investigate new triangulated categories without silting object. Second, one studies two classes of $\tau$-tilting-finite algebras and give the numbers of their two-term silting objects. Finally, we explore when $\tau$-tilting-finiteness implies representatoin-finiteness, and obtain several classes of algebras in which a $\tau$-tilting-finite algebra is representation-finite. Comment: 15 pages, the proof of Theorem 4.11 revised, reference added |
Databáze: | OpenAIRE |
Externí odkaz: |