Detection of metastable electronic states by Penning trap mass spectrometry

Autor: Menno Door, Paul Indelicato, Christoph H. Keitel, Charlotte König, Stefan Ulmer, M. Braß, R. X. Schüssler, Zoltán Harman, H. Bekker, K. Kromer, Sergey Eliseev, M. Müller, A. Rischka, Pavel Filianin, J. R. Crespo López-Urrutia, Christoph Schweiger, Halil Cakir, W.J. Huang, Klaus Blaum, Maurits W. Haverkort, Yuri N. Novikov, Sven Sturm
Přispěvatelé: Max Planck Institute for Nuclear Physics (MPIK), Max-Planck-Gesellschaft, Laboratoire Kastler Brossel (LKB (Jussieu)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Space Operations Center (ESOC), European Space Agency (ESA), Helmholtz zentrum für Schwerionenforschung GmbH (GSI)
Rok vydání: 2020
Předmět:
Zdroj: Nature
Nature, Nature Publishing Group, 2020, 581 (7806), pp.42-46. ⟨10.1038/s41586-020-2221-0⟩
ISSN: 0028-0836
1476-4679
DOI: 10.1038/s41586-020-2221-0
Popis: State-of-the-art optical clocks1 achieve precisions of 10−18 or better using ensembles of atoms in optical lattices2,3 or individual ions in radio-frequency traps4,5. Promising candidates for use in atomic clocks are highly charged ions6 (HCIs) and nuclear transitions7, which are largely insensitive to external perturbations and reach wavelengths beyond the optical range8 that are accessible to frequency combs9. However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10−11—an improvement by a factor of ten compared with previous measurements10,11. With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 × 1016 hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 × 10−8 hertz and one of the highest electronic quality factors (1024) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions8,12 in HCIs, which are required for precision studies of fundamental physics6. Penning trap mass spectrometry is used to measure the electronic transition energy from a long-lived metastable state to the ground state in highly charged rhenium ions with a precision of 10−11.
Databáze: OpenAIRE