Resveratrol ameliorates brain injury via the TGF‑β‑mediated ERK signaling pathway in a rat model of cerebral hemorrhage

Autor: Riguang Zhao, Peng Zhang, Na Zhao, Hongjun Su, Kun Zhao
Rok vydání: 2019
Předmět:
Zdroj: Experimental and Therapeutic Medicine
ISSN: 1792-1015
1792-0981
DOI: 10.3892/etm.2019.7939
Popis: Brain injury is the most common intracranial injury in human cerebrovascular disease, which may lead to ischemic stroke. Resveratrol induces ameliorative effects in the treatment of certain human diseases by regulating different signaling pathways. The present study assessed the therapeutic effects of resveratrol and its potential mechanism of action in the neurons from rats with ischemia/reperfusion-induced cerebral hemorrhage. The rat model of cerebral hemorrhage was established and reverse transcription-quantitative polymerase chain reaction, western blotting, immunohistochemistry and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assays were subsequently performed to assess the therapeutic effects of resveratrol. The results demonstrated that treatment with resveratrol (10 mg/kg/day) decreased cerebral water content, hippocampal cell apoptosis and cerebral infarct volume compared with the PBS-treated group. Resveratrol treatment also increased neuronal cell viability, improved neurological function and blood brain barrier disruption compared with the PBS group following 21 days of treatment. The administration of resveratrol was demonstrated to decrease the levels of certain inflammatory factors, including ionized calcium binding adaptor molecule 1 and myeloperoxidase, in rats with cerebral hemorrhage. The results revealed that treatment with resveratrol regulated neuronal apoptosis by downregulating the transforming growth factor-β (TGF-β)-mediated extracellular signal-regulated kinase (ERK) signaling pathway. In conclusion, these results indicate that resveratrol decreases ischemia/reperfusion-induced neuronal apoptosis by downregulating the TGF-β-mediated ERK pathway in a rat model of cerebral hemorrhage and may serve as a potential agent for the treatment of cerebral hemorrhage.
Databáze: OpenAIRE