Best approximations of the ϕ-Hadamard fractional Volterra integro-differential equation by matrix valued fuzzy control functions
Autor: | Reza Saadati, Safoura Rezaei Aderyani |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Ulam–Hyers–Rassias stability
Banach space Mathematics::Classical Analysis and ODEs 01 natural sciences Fuzzy logic Matrix (mathematics) ϕ-Hadamard fractional equation Integro-differential equation Applied mathematics 0101 mathematics Mathematics Normed vector space Mathematics::Functional Analysis Algebra and Number Theory Partial differential equation Applied Mathematics lcsh:Mathematics 010102 general mathematics Fuzzy control system lcsh:QA1-939 010101 applied mathematics Ordinary differential equation MVFB-space Fixed point method Analysis Volterra integro-differential equation |
Zdroj: | Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-21 (2021) |
ISSN: | 1687-1847 |
Popis: | In this article, first, we present an example of fuzzy normed space by means of the Mittag-Leffler function. Next, we extend the concept of fuzzy normed space to matrix valued fuzzy normed space and also we introduce a class of matrix valued fuzzy control functions to stabilize a nonlinear ϕ-Hadamard fractional Volterra integro-differential equation. In this sense, we investigate the Ulam–Hyers–Rassias stability for this kind of fractional equations in matrix valued fuzzy Banach space. Finally, as an application, we investigate the Ulam–Hyers–Rassias stability using matrix valued fuzzy control function obtained through the Mittag-Leffler function. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |