MBSP1: a biosurfactant protein derived from a metagenomic library with activity in oil degradation
Autor: | Amanda P. Napp, Evandro Pereira, Rita C. B. Silva-Portela, Marbella Maria Fonseca, Marilene Henning Vainstein, Sinara Carla da Silva Araújo, Lucymara Fassarella Agnez-Lima, Uaska Bezerra da Silva, Daniel Chaves de Lima, Wydemberg J. Araújo |
---|---|
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
0301 basic medicine Protein Conformation Microorganism Hypothetical protein lcsh:Medicine medicine.disease_cause 01 natural sciences Article 03 medical and health sciences Open Reading Frames Structure-Activity Relationship Surface-Active Agents Protein structure Bacterial Proteins 010608 biotechnology medicine Environmental DNA lcsh:Science Escherichia coli Phylogeny Multidisciplinary Halobacteriaceae biology Chemistry lcsh:R biology.organism_classification Lipid Metabolism Hydrocarbons Open reading frame 030104 developmental biology Biochemistry Metagenomics lcsh:Q Oils Bacteria Bioremediation Archaeal genes |
Zdroj: | Scientific Reports Scientific Reports, Vol 10, Iss 1, Pp 1-13 (2020) |
ISSN: | 2045-2322 |
Popis: | Microorganisms represent the most abundant biomass on the planet; however, because of several cultivation technique limitations, most of this genetic patrimony has been inaccessible. Due to the advent of metagenomic methodologies, such limitations have been overcome. Prevailing over these limitations enabled the genetic pool of non-cultivable microorganisms to be exploited for improvements in the development of biotechnological products. By utilising a metagenomic approach, we identified a new gene related to biosurfactant production and hydrocarbon degradation. Environmental DNA was extracted from soil samples collected on the banks of the Jundiaí River (Natal, Brazil), and a metagenomic library was constructed. Functional screening identified the clone 3C6, which was positive for the biosurfactant protein and revealed an open reading frame (ORF) with high similarity to sequences encoding a hypothetical protein from species of the family Halobacteriaceae. This protein was purified and exhibited biosurfactant activity. Due to these properties, this protein was named metagenomic biosurfactant protein 1 (MBSP1). In addition, E. coli RosettaTM (DE3) strain cells transformed with the MBSP1 clone showed an increase in aliphatic hydrocarbon degradation. In this study, we described a single gene encoding a protein with marked tensoactive properties that can be produced in a host cell, such as Escherichia coli, without substrate dependence. Furthermore, MBSP1 has been demonstrated as the first protein with these characteristics described in the Archaea or Bacteria domains. |
Databáze: | OpenAIRE |
Externí odkaz: |