QTL Mapping for Drought-Responsive Agronomic Traits Associated with Physiology, Phenology, and Yield in an Andean Intra-Gene Pool Common Bean Population
Autor: | Vladimir Meglič, Mateja Zupin, Aleš Sedlar, Jelka Šuštar-Vozlič, Barbara Pipan, Jaka Razinger, Marko Maras |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Germplasm Drought tolerance Population Physiology Biology Quantitative trait locus 01 natural sciences phenology quantitative trait loci (qtls) lcsh:Agriculture 03 medical and health sciences Pleiotropy education 030304 developmental biology common bean 0303 health sciences education.field_of_study Phenology fungi drought stress lcsh:S food and beverages biology.organism_classification yield physiology Gene pool Phaseolus Agronomy and Crop Science 010606 plant biology & botany |
Zdroj: | Agronomy, Vol 10, Iss 2, p 225 (2020) Agronomy Volume 10 Issue 2 |
ISSN: | 2073-4395 |
Popis: | Understanding the genetic background of drought tolerance in common bean (Phaseolus vulgaris L.) can aid its resilience improvement. However, drought response studies in large seeded genotypes of Andean origin are insufficient. Here, a novel Andean intra-gene pool genetic linkage map was created for quantitative trait locus (QTL) mapping of drought-responsive traits in a recombinant inbred line population from a cross of two cultivars differing in their response to drought. Single environment and QTL × environment analysis revealed 49 QTLs for physiology, phenology, and yield-associated traits under control and/or drought conditions. Notable QTLs for days to flowering (Df1.1 and Df 1.2) were co-localized with a putative QTL for days to pods (Dp1.1) on linkage group 1, suggesting pleiotropy for genes controlling them. QTLs with stable effects for number of seeds per pod (Sp2.1) in both seasons and putative water potential QTLs (Wp1.1, Wp5.1) were detected. Detected QTLs were validated by projection on common bean consensus linkage map. Drought response-associated QTLs identified in the novel Andean recombinant inbred line (RIL) population confirmed the potential of Andean germplasm in improving drought tolerance in common bean. Yield-associated QTLs Syp1.1, Syp1.2, and Sp2.1 in particular could be useful for marker-assisted selection for higher yield of Andean common beans. |
Databáze: | OpenAIRE |
Externí odkaz: |