On the distribution of the largest real eigenvalue for the real Ginibre ensemble

Autor: Oleg Zaboronski, Roger Tribe, Mihail Poplavskyi
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Ann. Appl. Probab. 27, no. 3 (2017), 1395-1413
ISSN: 1050-5164
Popis: Let $\sqrt{N}+\lambda_{max}$ be the largest real eigenvalue of a random $N\times N$ matrix with independent $N(0,1)$ entries (the `real Ginibre matrix'). We study the large deviations behaviour of the limiting $N\rightarrow \infty$ distribution $P[\lambda_{max}0$, \[ P[\lambda_{max}0$ - can be read off from the corresponding answers for $\lambda_{max}$ using $X_s^{(max)}\stackrel{D}{=} \sqrt{4s}\lambda_{max}$.
Comment: 20 pages, expanded introduction, added references
Databáze: OpenAIRE