Candidate innate immune system gene expression in the ecological model Daphnia

Autor: Judith E. Allen, Pierrick Labbé, Kirsten M. Ellegaard, Ellen Decaestecker, Tom J. Little
Přispěvatelé: Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR226, Uppsala University, Institute of Evolutionary Biology, University of Edinburgh, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2010
Předmět:
0106 biological sciences
Candidate gene
HOST
ved/biology.organism_classification_rank.species
Resistance
NATURAL-POPULATION
Gene Expression
Nitric Oxide Synthase Type II
Nitric Oxide Synthase Type I
medicine.disease_cause
[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunity
01 natural sciences
Genome
INFECTION
Drosophila Proteins
EXPERIMENTAL COEVOLUTION
Genetics
0303 health sciences
Enzyme Precursors
Genomic Library
FRESH-WATER
Innate immune system
Pasteuria ramosa
Pasteuria
GENOME
DROSOPHILA
Parasitism
Host-Pathogen Interactions
Models
Animal

Cytokines
Life Sciences & Biomedicine
Catechol Oxidase
Genotype
Immunology
Fisheries
Biology
010603 evolutionary biology
Article
03 medical and health sciences
[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

Genetic model
medicine
Animals
Model organism
Gene
Serpins
030304 developmental biology
Science & Technology
NITRIC-OXIDE
Arginase
Base Sequence
ved/biology
qRT-PCR
biology.organism_classification
EVOLUTION
Immunity
Innate

Daphnia
Host-pathogen coevolution
Host–pathogen coevolution
Zoology
Developmental Biology
Zdroj: Developmental and Comparative Immunology
Developmental and Comparative Immunology, Elsevier, 2011, 35 (10), pp.1068-1077. ⟨10.1016/j.dci.2011.04.004⟩
Developmental and Comparative Immunology, 2011, 35 (10), pp.1068-1077. ⟨10.1016/j.dci.2011.04.004⟩
Decaestecker, E, Labbé, P, Ellegaard, K, Allen, J E & Little, T J 2011, ' Candidate innate immune system gene expression in the ecological model Daphnia ', Developmental and Comparative Immunology, vol. 35, no. 10, pp. 1068-77 . https://doi.org/10.1016/j.dci.2011.04.004
ISSN: 1879-0089
0145-305X
Popis: The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia-Pasteuria interaction. ispartof: Developmental and Comparative Immunology vol:35 issue:10 pages:1068-1077 ispartof: location:United States status: published
Databáze: OpenAIRE