A new geometrical perspective on Bohr-equivalence of exponential polynomials
Autor: | Juan Matias Sepulcre, Tomás Vidal |
---|---|
Přispěvatelé: | Universidad de Alicante. Departamento de Matemáticas, Curvas Alpha-Densas. Análisis y Geometría Local |
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Property (philosophy) 01 natural sciences Exponential polynomial symbols.namesake Perspective (geometry) 0103 physical sciences Equivalence relation Exponential polynomials Point (geometry) Bohr’s equivalence relation 0101 mathematics Functions of a complex variable Equivalence (measure theory) Mathematical Physics Mathematics Análisis Matemático Algebra and Number Theory 010102 general mathematics Bohr’s equivalence theorem Crystal-like structure Bohr model symbols Exponential sums 010307 mathematical physics General Dirichlet series Analysis |
Zdroj: | RUA. Repositorio Institucional de la Universidad de Alicante Universidad de Alicante (UA) |
Popis: | Based on Bohr’s equivalence relation for general Dirichlet series, in this paper we connect the families of equivalent exponential polynomials with a geometrical point of view related to lines in crystal-like structures. In particular we characterize this equivalence relation, and give an alternative proof of Bochner’s property referring to these functions, through this new geometrical perspective. The first author’s research was partially supported by PGC2018-097960-B-C22 (MCIU/AEI/ERDF, UE). |
Databáze: | OpenAIRE |
Externí odkaz: |