Degenerate processes killed at the boundary of a domain

Autor: Bena��m, Michel, Champagnat, Nicolas, O��afrain, William, Villemonais, Denis
Přispěvatelé: Institut de Mathématiques (UNINE), Université de Neuchâtel (UNINE), Biology, genetics and statistics (BIGS), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), This research is supported by the Swiss National Foundation grant 200020 196999.
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Popis: We investigate certain properties of degenerate Feller processes that are killed when exiting a relatively compact set. Our main result provides general conditions ensuring that such a process possesses a (possibly non unique) quasi stationary distribution. Conditions ensuring uniqueness and exponential convergence are discussed. The results are applied to nonelliptic and hypoelliptic stochastic differential equations.
Databáze: OpenAIRE