Inferring FSM Models of Systems Without Reset

Autor: Alexandre Petrenko, Adenilso Simao, Roland Groz, Catherine Oriat
Přispěvatelé: Université Grenoble Alpes INP (Grenoble INP), Universidade de São Paulo (USP), Centre de Recherche Informatique de Montréal = Computer Research Institute of Montréal (CRIM), Validation de Systèmes, Composants et Objets logiciels (VASCO), Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Machine Learning for Dynamic Software Analysis
Machine Learning for Dynamic Software Analysis, pp.178-201, 2018
Lecture Notes in Computer Science ISBN: 9783319965611
Popis: Active inference algorithms that are used to extract behavioural models of software systems usually assume that the System Under Inference (SUI) can be reset. Two approaches have been proposed to infer systems that cannot be reset. Rivest and Schapire proposed an adaptation of the \(L^*\) algorithm that relies on having a homing sequence for the SUI. We detail here another approach that is based on characterization sequences. More precisely, we assume classical testing hypotheses, namely that we are given a bound n on the number of states and a set W of characterizing sequences to distinguish states. Contrary to \(L^*\), it does not require an external oracle to decide on equivalence. The length of the test sequence is polynomial in n and the exponent depends on the cardinality |W| of the characterization set. For systems where resetting is impossible or expensive, this approach can be a viable alternative to classical learning methods.
Databáze: OpenAIRE