Rational Functions with Small Value Set

Autor: Herivelto Borges, Luciane Quoos, Daniele Bartoli
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.14760/owp-2020-05
Popis: In connection with Galois Theory and Algebraic Curves, this paper investigates rational functions $h(x) = f(x)/g(x) \in \mathbb{F}_q(x)$ for which the value set $V_h = {\{h(α) | α \in \mathbb{F}_q \cup\{\infty\}}\}$ is relatively small. In particular, under certain circumstances, it proves that $h(x)$ having a small value set is equivalent to the field extension $\mathbb{F}_q(x)/\mathbb{F}_q(h(x))$ being Galois.
Oberwolfach Preprints;2020,05
Databáze: OpenAIRE