On generically tame algebras over perfect fields
Autor: | Raymundo Bautista, L. Salmerón, E. Pérez |
---|---|
Jazyk: | angličtina |
Předmět: |
Discrete mathematics
Pure mathematics Mathematics(all) Reduction functors General Mathematics Endolength Dimension (graph theory) Natural number Principal ideal Bounded function Differential tensor algebras Perfect field Ditalgebras Tame algebras Bounded principal ideal domains Algebra over a field Algebraically closed field Indecomposable module Mathematics Generic modules |
Zdroj: | Advances in Mathematics. (1):436-481 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2012.04.029 |
Popis: | Given a generically tame finite-dimensional algebra Λ over an infinite perfect field, we give, for each natural number d , parametrizations of the indecomposable Λ -modules with dimension d similar to those occurring for the algebraically closed field case. We parametrize over bounded principal ideal domains, instead of over rational algebras. |
Databáze: | OpenAIRE |
Externí odkaz: |