Quantum Smooth Boundary Forces from Constrained Geometries

Autor: D. Noguera, Jean-Pierre Gazeau, Tomoi Koide
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: J.Phys.A
J.Phys.A, 2019, 52 (44), pp.445203. ⟨10.1088/1751-8121/ab4775⟩
DOI: 10.1088/1751-8121/ab4775⟩
Popis: We implement the so-called Weyl-Heisenberg covariant integral quantization in the case of a classical system constrained by a bounded or semi-bounded geometry. The procedure, which is free of the ordering problem of operators, is illustrated with the basic example of the one-dimensional motion of a free particle in an interval, and yields a fuzzy boundary, a position-dependent mass (PDM), and an extra potential on the quantum level. The consistency of our quantization is discussed by analyzing the semi-classical phase space portrait of the derived quantum dynamics, which is obtained as a regularization of its original classical counterpart.
22 pages, 14 figures, the title was changed, many references for the position-dependent mass were delited, the published version in J. Phys. A
Databáze: OpenAIRE