On strong infinite Sidon and Bh sets and random sets of integers

Autor: Juanjo Rué, David Fabian, Christoph Spiegel
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
DOI: 10.1016/j.jcta.2021.105460
Popis: A set of integers S ⊂ N is an α–strong Sidon set if the pairwise sums of its elements are far apart by a certain measure depending on α, more specifically if | ( x + w ) − ( y + z ) | ≥ max ⁡ { x α , y α , z α , w α } for every x , y , z , w ∈ S satisfying max ⁡ { x , w } ≠ max ⁡ { y , z } . We obtain a new lower bound for the growth of α–strong infinite Sidon sets when 0 ≤ α 1 . We also further extend that notion in a natural way by obtaining the first non-trivial bound for α–strong infinite B h sets. In both cases, we study the implications of these bounds for the density of, respectively, the largest Sidon or B h set contained in a random infinite subset of N . Our theorems improve on previous results by Kohayakawa, Lee, Moreira and Rodl.
Databáze: OpenAIRE