Additional file 1 of Microbial hydrogen 'manufactory' for enhanced gas therapy and self-activated immunotherapy via reduced immune escape

Autor: Yan, Hongyu, Fan, Miao, Liu, Huifang, Xiao, Tingshan, Han, Dandan, Che, Ruijun, Zhang, Wei, Zhou, Xiaohan, Wang, June, Zhang, Chi, Yang, Xinjian, Zhang, Jinchao, Li, Zhenhua
Rok vydání: 2022
DOI: 10.6084/m9.figshare.20080967
Popis: Additional file 1. Figure S1. The gram stain of PSB. Scale bar, 10 μm. Figure S2. The standard curve of MB in different concentrations. Figure S3. UV-Vis absorbance spectra of hydrogen production at different concentrations (103, 104, 105, 106, 107 CFU/mL) of PSB. Figure S4. UV-Vis absorbance spectra of hydrogen production at different light intensity (12 A, 13 A, 14 A) of PSB. Figure S5. UV-Vis absorbance spectra of hydrogen production at different glucose concentrations (0 g/L, 15 g/L, 30 g/L) of PSB. Figure S6. H2 production under different light sources. UV-Vis absorbance spectra of hydrogen production under (A) LED and (B) 808 exciting light. (C) Quantity of hydrogen production of PSB under different light sources. Figure S7. The time-dependent temperature changes of PSB with different concentrations of PSB under xenon lamp. Figure S8. Detection of the production and diffusion of H2 in MCF-7 cells via MB probe under different treatments. Scale bar, 500 μm. Figure S9. Cytotoxic effects of PSB and H2. (A) Toxicity of PSB to DC at different concentrations. (B) The study of MCF-7 cells killing effect at different concentrations with or without H2. Figure S10. Calcein AM and PI staining showed confocal fluorescence images of MCTSs with or without xenon lamp irradiation for 10 min. (green: living cells; red: dead cells). Scale bar,100μm. Figure S11. Cell apoptosis measured by flow cytometry using Annexin V/PI staining after treatment with H2 for 6 h. Figure S12. Detection of ·OH levels in MCF-7 cells after hydrogen treatment. Figure S13. The mechanistic of H2 therapy on B16-F10 cells. (A) Detection of MMP changed with JC-1 staining in B16-F10 cells. Scale bar, 400 μm. (B) ROS changed in B16-F10 cells after hydrogen treatment. Scale bar, 1000 μm. (C) Fluorescence quantification of ROS. The change of (D) ·OH, (E) ATP activity and (F) Caspase-3 released in B16-F10 cells after treatment with H2. Figure S14. In vivo fluorescence imaging of mice in control and PSB group at different time after injection. Figure S15. The vivo metabolism of PSB at different time points. Figure S16. The blood biochemistry and blood routine of ICR mice after injection PSB (107 CFU/mL) for different times. Figure S17. Weight changes in ICR mice for 30 days after the injection of PSB with different concentrations. Figure S18. Tumor volume in each group after different treatments (n=6). Figure S19. H&E staining analysis of heart, liver, spleen, lung and kidney in different treated groups. Scale bar, 50 μm. Figure S20. Expression levels of Caspase-3 and Cytochrome C after the different treatments in vivo. Figure S21. Antigen stimulated DC activation. (A) The MHC II and (B) CD86 proteins were measured by flow cytometry on the DC after H2 treatment. Figure S22. The effect of H2-immunotherapy in vivo. (A) Images of mice within 14 days after different treatments. (B) Survival curve, (C) Tumor volume and (D) Body weight of mice after different treatments. Figure S23. Gram staining in the tumor tissue. Scale bar, 50 μm. Figure S24. Effects of different concentrations of TNF-α on PD-L1 expression.
Databáze: OpenAIRE