Poly(2-ethyl-2-oxazoline) functionalized reduced graphene oxide: Optimization of the reduction process using dopamine and application in cancer photothermal therapy

Autor: António G. Mendonça, Bruna L. Melo, Ilídio J. Correia, Cátia G. Alves, Duarte de Melo-Diogo, Rita Lima-Sousa, André F. Moreira
Rok vydání: 2021
Předmět:
Zdroj: Materials scienceengineering. C, Materials for biological applications. 130
ISSN: 1873-0191
Popis: The high near infrared (NIR) absorption displayed by reduced graphene oxide (rGO) nanostructures renders them a great potential for application in cancer photothermal therapy. However, the production of this material often relies on the use of hydrazine as a reductant, leading to poor biocompatibility and environmental-related issues. In addition, to improve rGO colloidal stability, this material has been functionalized with poly(ethylene glycol). However, recent studies have reported the immunogenicity of poly(ethylene glycol)-based coatings. In this work, the production of rGO, by using dopamine as the reducing agent, was optimized considering the size distribution and NIR absorption of the attained materials. The obtained results unveiled that the rGO produced by using a 1:5 graphene oxide:dopamine weight ratio and a reaction time of 4 h (termed as DOPA-rGO) displayed the highest NIR absorption while retaining its nanometric size distribution. Subsequently, the DOPA-rGO was functionalized with thiol-terminated poly(2-ethyl-2-oxazoline) (P-DOPA-rGO), revealing suitable physicochemical features, colloidal stability and cytocompatibility. When irradiated with NIR light, the P-DOPA-rGO could produce a temperature increase (ΔT) of 36 °C (75 μg/mL; 808 nm, 1.7 W/cm2, 5 min). The photothermal therapy mediated by P-DOPA-rGO was capable of ablating breast cancer cells monolayers (viability < 3%) and could reduce heterotypic breast cancer spheroids' viability to just 30%. Overall, P-DOPA-rGO holds a great potential for application in breast cancer photothermal therapy.
Databáze: OpenAIRE