A periodic solution for the local fractional Boussinesq equation on cantor sets
Autor: | Gui-Lei Chen, Zheng-Tao Liu, Xiu-Rong Guo, Mei Guo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Generalized function
Renewable Energy Sustainability and the Environment lcsh:Mechanical engineering and machinery Mathematical analysis periodic solution Type (model theory) Symmetry (physics) Fractional calculus local fractional derivative Point (geometry) lcsh:TJ1-1570 Direct integration of a beam local fractional boussinesq equation Mathematics |
Zdroj: | Thermal Science, Vol 23, Iss 6 Part B, Pp 3719-3723 (2019) |
ISSN: | 0354-9836 |
Popis: | In this paper, the periodic solution for the local fractional Boussinesq equation can be obtained in the sense of the local fractional derivative. It’s given by applying direct integration with symmetry condition. Meanwhile, the periodic solution of the non-differentiable type with generalized functions defined on Cantor sets is analyzed. As a result, we have a new point to look the local fractional Boussinesq equation through the local fractional derivative theory. |
Databáze: | OpenAIRE |
Externí odkaz: |