Group law and the Security of elliptic curves on F_p[e_1,...,e_n]F p [e1 ​ ,...,e_n]

Autor: Chaichaa Abdelhak, Abdelalim Seddik, Souhail Mohamed
Rok vydání: 2017
Předmět:
Zdroj: Advances in Science, Technology and Engineering Systems, Vol 2, Iss 5, Pp 104-108 (2017)
ISSN: 2415-6698
DOI: 10.25046/aj020517
Popis: In this paper, we study the elliptic curve E_{a,b}(A_P)E a,b ​ (A P ​ ), with A_PA P ​ the localization of the ring A=F _p[e_1,...,e_n]A=F p ​ [e 1 ​ ,...,e n ​ ] where e_ie_i=e_ie i ​ e i ​ =e i ​ and e_ie_j=0e i ​ e j ​ =0 if i\neq ji≠j, in the maximal ideal P=(e_1,...,e_n)P=(e 1 ​ ,...,e n ​ ). Finally we show that Card(E_{a,b}(A_P))\geqslant (Card(E_{a,b}(F_p))-3)^n+Card(E_{a,b}(F_p))Card(E a,b ​ (A P ​ ))⩾(Card(E a,b ​ (F p ​ ))−3) n +Card(E a,b ​ (F p ​ )) and the execution time to solve the problem of discrete logarithm in E_{a,b}(A_P)E a,b ​ (A P ​ ) is \Omega(N)Ω(N), such that the execution time to solve the problem of discrete logarithm in E_{a,b}(F_p)E a,b ​ (F p ​ ) is O(\sqrt{N})O( N ​ ). The motivation for this work came from search for new groups with intractable (DLP) discrete logarithm problem is there great importance.
Databáze: OpenAIRE