Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model
Autor: | Rego, Gabriel Nery de Albuquerque, Mamani, Javier Bustamante, Souza, Taylla Klei Felix, Nucci, Mariana Penteado, da Silva, Helio Rodrigues, Gamarra, Lionel Fernel |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Male
Time Factors Magnetic Field Therapy lcsh:Medicine Nanoparticle Ferric Compounds Body Temperature chemistry.chemical_compound 0302 clinical medicine Nuclear magnetic resonance Reference Values Medicine 030212 general & internal medicine Nanopartículas de magnetita Ratos Magneto hipertermia Brain Neoplasms Nanopartículas Specific absorption rate General Medicine Magnetic field Treatment Outcome 030220 oncology & carcinogenesis Glioblastoma/therapy Original Article Iron oxide nanoparticles 03 medical and health sciences In vivo Cell Line Tumor Animals Bioluminescence Aminosilana Rats Wistar Magnetite nanoparticles Aminosilane Analysis of Variance business.industry Glioblastoma/terapia lcsh:R Reproducibility of Results Hyperthermia Induced equipment and supplies Cell tracking/methods Rats Disease Models Animal Magnetic hyperthermia chemistry Luminescent Measurements Nanoparticles Tumoral model Modelo tumoral Glioblastoma business human activities Magnetic hyperthermia |
Zdroj: | einstein (São Paulo) v.17 n.4 2019 Einstein (São Paulo) Instituto Israelita de Ensino e Pesquisa Albert Einstein (IIEPAE) instacron:IIEPAE Einstein (São Paulo), Vol 17, Iss 4 Einstein (São Paulo), Volume: 17, Issue: 4, Article number: eAO4786, Published: 01 AUG 2019 Einstein |
Popis: | Objective: To evaluate the potential of magnetic hyperthermia using aminosilane-coated superparamagnetic iron oxide nanoparticles in glioblastoma tumor model. Methods: The aminosilane-coated superparamagnetic iron oxide nanoparticles were analyzed as to their stability in aqueous medium and their heating potential through specific absorption rate, when submitted to magnetic hyperthermia with different frequencies and intensities of alternating magnetic field. In magnetic hyperthermia in vitro assays, the C6 cells cultured and transduced with luciferase were analyzed by bioluminescence in the absence/presence of alternating magnetic field, and also with and without aminosilane-coated superparamagnetic iron oxide nanoparticles. In the in vivo study, the measurement of bioluminescence was performed 21 days after glioblastoma induction with C6 cells in rats. After 24 hours, the aminosilane-coated superparamagnetic iron oxide nanoparticles were implanted in animals, and magnetic hyperthermia was performed for 40 minutes, using the best conditions of frequency and intensity of alternating magnetic field tested in the in vitro study (the highest specific absorption rate value) and verified the difference of bioluminescence before and after magnetic hyperthermia. Results: The aminosilane-coated superparamagnetic iron oxide nanoparticles were stable, and their heating capacity increased along with higher frequency and intensity of alternating magnetic field. The magnetic hyperthermia application with 874kHz and 200 Gauss of alternating magnetic field determined the best value of specific absorption rate (194.917W/g). When these magnetic hyperthermia parameters were used in in vitro and in vivo analysis, resulted in cell death of 52.0% and 32.8%, respectively, detected by bioluminescence. Conclusion: The magnetic hyperthermia was promissing for the therapeutical process of glioblastoma tumors in animal model, using aminosilane-coated superparamagnetic iron oxide nanoparticles, which presented high specific absorption rate. RESUMO Objetivo: Avaliar o potencial da técnica de magneto-hipertermia utilizando nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana em modelo de tumores de glioblastoma. Métodos: As nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana foram avaliadas quanto à sua estabilidade em meio aquoso e a seu potencial de aquecimento pela taxa de absorção específica, quando submetidas à magneto-hipertermia, com diferentes frequências e intensidades de campo magnético alternado. Nos ensaios de magneto-hipertermia in vitro, as células C6 cultivadas e transduzidas com luciferase foram avaliadas por bioluminescência na presença/ausência do campo magnético alternado, como também com e sem nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana. No estudo in vivo, a medida de bioluminescência foi adquirida no 21º dia após indução do glioblastoma com células C6 nos ratos. Após 24 horas, as nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana foram implantadas no animal, tendo sido realizada a magneto-hipertermia por 40 minutos, nas melhores condições de frequência e intensidade de campo magnético alternado testado no estudo in vitro (maior valor da taxa de absorção específica); foi verificada a diferença do bioluminescência antes e após a magneto-hipertermia. Resultados: As nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana se mostraram estáveis, e sua capacidade de aquecimento aumentou com o incremento da frequência e da intensidade de campo magnético alternado. A aplicação da magneto-hipertermia, com 874kHz e 200 Gauss do campo magnético alternado, determinou o melhor valor da taxa de absorção específica (194,917W/g). Quando utilizados, estes parâmetros de magneto-hipertermia in vitro resultaram em morte celular de 52,0% e in vivo de 32,8% por bioluminescência. Conclusão: A técnica de magneto-hipertermia foi promissora para o processo terapêutico de tumores de glioblastoma no modelo animal utilizando as nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana recobertas com aminosilana, que apresentaram alta taxa de absorção específica. |
Databáze: | OpenAIRE |
Externí odkaz: |