Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model

Autor: Rego, Gabriel Nery de Albuquerque, Mamani, Javier Bustamante, Souza, Taylla Klei Felix, Nucci, Mariana Penteado, da Silva, Helio Rodrigues, Gamarra, Lionel Fernel
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Male
Time Factors
Magnetic Field Therapy
lcsh:Medicine
Nanoparticle
Ferric Compounds
Body Temperature
chemistry.chemical_compound
0302 clinical medicine
Nuclear magnetic resonance
Reference Values
Medicine
030212 general & internal medicine
Nanopartículas de magnetita
Ratos
Magneto
hipertermia

Brain Neoplasms
Nanopartículas
Specific absorption rate
General Medicine
Magnetic field
Treatment Outcome
030220 oncology & carcinogenesis
Glioblastoma/therapy
Original Article
Iron oxide nanoparticles
03 medical and health sciences
In vivo
Cell Line
Tumor

Animals
Bioluminescence
Aminosilana
Rats
Wistar

Magnetite nanoparticles
Aminosilane
Analysis of Variance
business.industry
Glioblastoma/terapia
lcsh:R
Reproducibility of Results
Hyperthermia
Induced

equipment and supplies
Cell tracking/methods
Rats
Disease Models
Animal

Magnetic hyperthermia
chemistry
Luminescent Measurements
Nanoparticles
Tumoral model
Modelo tumoral
Glioblastoma
business
human activities
Magnetic
hyperthermia
Zdroj: einstein (São Paulo) v.17 n.4 2019
Einstein (São Paulo)
Instituto Israelita de Ensino e Pesquisa Albert Einstein (IIEPAE)
instacron:IIEPAE
Einstein (São Paulo), Vol 17, Iss 4
Einstein (São Paulo), Volume: 17, Issue: 4, Article number: eAO4786, Published: 01 AUG 2019
Einstein
Popis: Objective: To evaluate the potential of magnetic hyperthermia using aminosilane-coated superparamagnetic iron oxide nanoparticles in glioblastoma tumor model. Methods: The aminosilane-coated superparamagnetic iron oxide nanoparticles were analyzed as to their stability in aqueous medium and their heating potential through specific absorption rate, when submitted to magnetic hyperthermia with different frequencies and intensities of alternating magnetic field. In magnetic hyperthermia in vitro assays, the C6 cells cultured and transduced with luciferase were analyzed by bioluminescence in the absence/presence of alternating magnetic field, and also with and without aminosilane-coated superparamagnetic iron oxide nanoparticles. In the in vivo study, the measurement of bioluminescence was performed 21 days after glioblastoma induction with C6 cells in rats. After 24 hours, the aminosilane-coated superparamagnetic iron oxide nanoparticles were implanted in animals, and magnetic hyperthermia was performed for 40 minutes, using the best conditions of frequency and intensity of alternating magnetic field tested in the in vitro study (the highest specific absorption rate value) and verified the difference of bioluminescence before and after magnetic hyperthermia. Results: The aminosilane-coated superparamagnetic iron oxide nanoparticles were stable, and their heating capacity increased along with higher frequency and intensity of alternating magnetic field. The magnetic hyperthermia application with 874kHz and 200 Gauss of alternating magnetic field determined the best value of specific absorption rate (194.917W/g). When these magnetic hyperthermia parameters were used in in vitro and in vivo analysis, resulted in cell death of 52.0% and 32.8%, respectively, detected by bioluminescence. Conclusion: The magnetic hyperthermia was promissing for the therapeutical process of glioblastoma tumors in animal model, using aminosilane-coated superparamagnetic iron oxide nanoparticles, which presented high specific absorption rate. RESUMO Objetivo: Avaliar o potencial da técnica de magneto-hipertermia utilizando nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana em modelo de tumores de glioblastoma. Métodos: As nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana foram avaliadas quanto à sua estabilidade em meio aquoso e a seu potencial de aquecimento pela taxa de absorção específica, quando submetidas à magneto-hipertermia, com diferentes frequências e intensidades de campo magnético alternado. Nos ensaios de magneto-hipertermia in vitro, as células C6 cultivadas e transduzidas com luciferase foram avaliadas por bioluminescência na presença/ausência do campo magnético alternado, como também com e sem nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana. No estudo in vivo, a medida de bioluminescência foi adquirida no 21º dia após indução do glioblastoma com células C6 nos ratos. Após 24 horas, as nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana foram implantadas no animal, tendo sido realizada a magneto-hipertermia por 40 minutos, nas melhores condições de frequência e intensidade de campo magnético alternado testado no estudo in vitro (maior valor da taxa de absorção específica); foi verificada a diferença do bioluminescência antes e após a magneto-hipertermia. Resultados: As nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana se mostraram estáveis, e sua capacidade de aquecimento aumentou com o incremento da frequência e da intensidade de campo magnético alternado. A aplicação da magneto-hipertermia, com 874kHz e 200 Gauss do campo magnético alternado, determinou o melhor valor da taxa de absorção específica (194,917W/g). Quando utilizados, estes parâmetros de magneto-hipertermia in vitro resultaram em morte celular de 52,0% e in vivo de 32,8% por bioluminescência. Conclusão: A técnica de magneto-hipertermia foi promissora para o processo terapêutico de tumores de glioblastoma no modelo animal utilizando as nanopartículas superparamagnéticas de óxido de ferro recobertas com aminosilana recobertas com aminosilana, que apresentaram alta taxa de absorção específica.
Databáze: OpenAIRE