Adaptive Neural Network Control of a Compact Bionic Handling Arm
Autor: | Achille Melingui, Boubaker Daachi, Jean Bosco Mbede, Othman Lakhal, Rochdi Merzouki |
---|---|
Přispěvatelé: | Electrical and Telecommunications Engineering Department of Ecole Nationale Supérieure Polytechnique, the University of Yaoundé, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire Images, Signaux et Systèmes Intelligents (LISSI), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Laboratoire de Robotique de Versailles (LRV), Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), SIRIUS, Laboratoire Images, Signaux et Systèmes Intelligents ( LISSI ), Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ), Laboratoire d'Automatique, Génie Informatique et Signal ( LAGIS ), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Centre National de la Recherche Scientifique ( CNRS ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
0209 industrial biotechnology
Engineering Stability (learning theory) 02 engineering and technology Kinematics law.invention [SPI.AUTO]Engineering Sciences [physics]/Automatic 020901 industrial engineering & automation Control theory law [INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering [ INFO.INFO-AU ] Computer Science [cs]/Automatic Control Engineering 0202 electrical engineering electronic engineering information engineering [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] Cartesian coordinate system Electrical and Electronic Engineering ComputingMilieux_MISCELLANEOUS Artificial neural network business.industry Supervised learning [ INFO.INFO-RB ] Computer Science [cs]/Robotics [cs.RO] Control engineering Computer Science Applications Control and Systems Engineering Control system Robot 020201 artificial intelligence & image processing business Actuator |
Zdroj: | IEEE/ASME Transactions on Mechatronics IEEE/ASME Transactions on Mechatronics, Institute of Electrical and Electronics Engineers, 2015, 20 (6), pp.2862-2875. ⟨10.1109/TMECH.2015.2396114⟩ IEEE Transactions on Mechatronics IEEE Transactions on Mechatronics, 2015, 20 (6), pp.2862-2875 IEEE/ASME Transactions on Mechatronics, 2015, 20 (6), pp.2862-2875. ⟨10.1109/TMECH.2015.2396114⟩ IEEE/ASME Transactions on Mechatronics, Institute of Electrical and Electronics Engineers, 2015, 20 (6), pp.2862-2875 |
ISSN: | 1083-4435 |
DOI: | 10.1109/TMECH.2015.2396114⟩ |
Popis: | In this paper, autonomous control problem of a class of bionic continuum robots named “Compact Bionic Handling Arm” (CBHA) is addressed. These robots can reproduce biological behaviors of trunks, tentacles, or snakes. The modeling problem associated with continuum robots includes nonlinearities, structured and unstructured uncertainties, and the hyperredundancy. In addition to these problems, the CBHA comprises the hysteresis behavior of its actuators and a memory phenomenon related to its structure made of polyamide materials. These undesirable effects make it difficult to design a control system based on quantitative models of the CBHA. Thus, two subcontrollers are proposed in this paper. One, encapsulated in the other, and both implemented in real time allow controlling of the CBHA's end-effector position. The first subcontroller controls the CBHA's kinematics based on a distal supervised learning scheme. The second subcontroller controls the CBHA's kinetics based on an adaptive neural control. These subcontrollers allow a better assessment of the stability of the control architecture while ensuring the convergence of Cartesian errors. The obtained experimental results using a CBHA robot show an accurate tracking of the CBHA's end-effector position. |
Databáze: | OpenAIRE |
Externí odkaz: |