Self-Supervised Euphemism Detection and Identification for Content Moderation
Autor: | Hongyu Gong, Rohan Bansal, Suma Bhat, Wanzheng Zhu, Giulia Fanti, Zachary Weinberg, Nicolas Christin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Text corpus
FOS: Computer and information sciences Computer Science - Computation and Language Computer science business.industry Internet privacy 020206 networking & telecommunications Context (language use) 02 engineering and technology 16. Peace & justice Euphemism Identification (information) Container (abstract data type) 0202 electrical engineering electronic engineering information engineering Social media Meaning (existential) business Computation and Language (cs.CL) Word (computer architecture) |
Zdroj: | IEEE Symposium on Security and Privacy |
Popis: | Fringe groups and organizations have a long history of using euphemisms--ordinary-sounding words with a secret meaning--to conceal what they are discussing. Nowadays, one common use of euphemisms is to evade content moderation policies enforced by social media platforms. Existing tools for enforcing policy automatically rely on keyword searches for words on a "ban list", but these are notoriously imprecise: even when limited to swearwords, they can still cause embarrassing false positives. When a commonly used ordinary word acquires a euphemistic meaning, adding it to a keyword-based ban list is hopeless: consider "pot" (storage container or marijuana?) or "heater" (household appliance or firearm?) The current generation of social media companies instead hire staff to check posts manually, but this is expensive, inhumane, and not much more effective. It is usually apparent to a human moderator that a word is being used euphemistically, but they may not know what the secret meaning is, and therefore whether the message violates policy. Also, when a euphemism is banned, the group that used it need only invent another one, leaving moderators one step behind. This paper will demonstrate unsupervised algorithms that, by analyzing words in their sentence-level context, can both detect words being used euphemistically, and identify the secret meaning of each word. Compared to the existing state of the art, which uses context-free word embeddings, our algorithm for detecting euphemisms achieves 30-400% higher detection accuracies of unlabeled euphemisms in a text corpus. Our algorithm for revealing euphemistic meanings of words is the first of its kind, as far as we are aware. In the arms race between content moderators and policy evaders, our algorithms may help shift the balance in the direction of the moderators. 18 pages, 5 figures, 10 tables, 42nd IEEE Symposium on Security & Privacy (2021) |
Databáze: | OpenAIRE |
Externí odkaz: |