Semiparametric transformation Models for arbitrarily Censored and truncated data

Autor: Filia Vonta, Catherine Huber-Carol
Přispěvatelé: Graffigne, Christine, Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS )
Jazyk: angličtina
Rok vydání: 2004
Předmět:
Zdroj: Survival Analysis and Quality of Liife
Survival Analysis and Quality of Liife, 2004, pp.167-176
Statistics for Industry and Technology ISBN: 9781461264910
Popis: A regression analysis for arbitrarily censored and truncated data was proposed by (1996), using Cox’s proportional hazards model, and based on (1976) for nonparametric estimation of a distribution function. We propose here a generalization of their method to the case where there is an unobserved heterogeneity in the data taken into account by a frailty model. Our methodology is applied to a set of real data on transfusion-related AIDS that has been used among others by (1989).
Databáze: OpenAIRE