Study of impulsive fractional differential equation under Robin boundary conditions by topological degree method
Autor: | Rahmat Ali Khan, Kamal Shah, Atta Ullah, Ibrahim Mahariq, Thabet Abdeljawad |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Class (set theory)
Fractional differential equations Algebra and Number Theory Partial differential equation Differential equation 010102 general mathematics Mathematical analysis Fixed-point theorem lcsh:QA299.6-433 Topological degree theory Robin boundary conditions lcsh:Analysis 01 natural sciences Robin boundary condition 010101 applied mathematics Nonlinear system Impulsive problems Ordinary differential equation 0101 mathematics Analysis Mathematics |
Zdroj: | Boundary Value Problems, Vol 2020, Iss 1, Pp 1-17 (2020) |
ISSN: | 1687-2770 |
DOI: | 10.1186/s13661-020-01396-3 |
Popis: | This research work is dedicated to investigating a class of impulsive fractional order differential equations under the Robin boundary conditions via the application of topological degree theory (TDT). We establish some adequate results for the existence of at most one solution for the consider problem. Further, the whole analysis is illustrated by providing a pertinent example. We keep in mind that the conditions we develop by using TDT are much weaker than using ordinary fixed point theory. Hence TDT can be used as powerful tool for the theoretical analysis of many linear and nonlinear problems. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |