GPUCorrel: A GPU accelerated Digital Image Correlation software written in Python

Autor: Pauline Lecomte-Grosbras, Jean-François Witz, Victor Couty, Mathias Brieu, E. Deletombe, Julien Berthe
Přispěvatelé: Laboratoire de Mécanique, Multiphysique, Multiéchelle - UMR 9013 (LaMcube), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), DMAS, ONERA [Lille], ONERA, California State University [Los Angeles] (CAL STATE LA)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: SoftwareX
SoftwareX, Elsevier, 2021, 16, pp.100815. ⟨10.1016/j.softx.2021.100815⟩
SoftwareX, 2021, 16, pp.100815. ⟨10.1016/j.softx.2021.100815⟩
SoftwareX, Vol 16, Iss, Pp 100815-(2021)
ISSN: 2352-7110
DOI: 10.1016/j.softx.2021.100815⟩
Popis: International audience; This article presents an open-source Integrated Digital Image Correlation (I-DIC) software written in Python using CUDA-enabled GPUs designed to run at high (1-100 Hz) frequency. The field computation is performed using a global approach and the result is a projection of the real field in a user-defined base of fields. This software can be used in many applications and one use in experimental mechanics is demonstrated by driving a bi-axial tensile test on a cruciform specimen.
Databáze: OpenAIRE