Equal values of certain partition functions via Diophantine equations
Autor: | Szabolcs Tengely, Maciej Ulas |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Popis: | Let $A\subset \N_{+}$ and by $P_{A}(n)$ denotes the number of partitions of an integer $n$ into parts from the set $A$. The aim of this paper is to prove several result concerning the existence of integer solutions of Diophantine equations of the form $P_{A}(x)=P_{B}(y)$, where $A, B$ are certain finite sets. Comment: 21 pages, submitted |
Databáze: | OpenAIRE |
Externí odkaz: |