SLA-Aware Cloud Query Processing with Reinforcement Learning-based Multi-Objective Re-Optimization
Autor: | Wang, Chenxiao, Gruenwald, Le, d'Orazio, Laurent |
---|---|
Přispěvatelé: | Computer Science Department- University of Oklahoma, University of Oklahoma (OU), A Symbolic and Human-centric view of dAta MANagement (SHAMAN), GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), d'Orazio, Laurent |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | DAWAK 2022-International Conference on Data Warehousing and Knowledge Discovery DAWAK 2022-International Conference on Data Warehousing and Knowledge Discovery, Aug 2022, Vienna, Austria Big Data Analytics and Knowledge Discovery ISBN: 9783031126697 |
Popis: | International audience; Query processing on cloud database systems is a challenging problem due to the dynamic cloud environment. In cloud database systems, besides query execution time, users also consider the monetary cost to be paid to the cloud provider for executing queries. Moreover, a Service Level Agreement (SLA) is signed between users and cloud providers before any service is provided. Thus, from the profit-oriented perspective for the cloud providers, query re-optimization is multi-objective optimization that minimizes not only query execution time and monetary cost but also SLA violations. In this paper, we introduce ReOptRL and SLAReOptRL, two novel query re-optimization algorithms based on deep reinforcement learning. Experiments show that both algorithms improve query execution time and query execution monetary cost by 50% over existing algorithms, and SLAReOptRL has the lowest SLA violation rate among all the algorithms. |
Databáze: | OpenAIRE |
Externí odkaz: |