Hermite–Padé approximation and simultaneous quadrature formulas
Autor: | G. López Lagomasino, U. Fidalgo Prieto, J. Illán |
---|---|
Rok vydání: | 2004 |
Předmět: |
Mathematics(all)
Numerical Analysis Hermite polynomials Matemáticas General Mathematics media_common.quotation_subject Applied Mathematics Mathematical analysis Hermite-Padé approximation 1202.02 Teoría de la Aproximación Nikishin systems Tanh-sinh quadrature Gauss–Kronrod quadrature formula Quadrature (mathematics) Simultaneous quadratures Hermite Padé approximation Gauss–Jacobi quadrature Padé approximant Normality Analysis Clenshaw–Curtis quadrature Mathematics media_common |
Zdroj: | Investigo. Repositorio Institucional de la Universidade de Vigo Universidade de Vigo (UVigo) e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid instname |
ISSN: | 0021-9045 |
DOI: | 10.1016/j.jat.2004.01.004 |
Popis: | 27 pages, no figures.-- MSC1991 code: Primary 42C05. MR#: MR2045538 (2005c:41024) Zbl#: Zbl 1065.42019 We study Hermite–Padé approximation of the so-called Nikishin systems of functions. In particular, the set of multi-indices for which normality is known to take place is considerably enlarged as well as the sequences of multi-indices for which convergence of the corresponding simultaneous rational approximants takes place. These results are applied to the study of the convergence properties of simultaneous quadrature rules of a given function with respect to different weights. The work of U.F.P. and G.L.L. was partially supported by Dirección General de Enseñanza Superior under Grant BFM2003-06335-C03-02 and of G.L.L. by INTAS under Grant INTAS 03-51-6637. Publicado |
Databáze: | OpenAIRE |
Externí odkaz: |