Hermite–Padé approximation and simultaneous quadrature formulas

Autor: G. López Lagomasino, U. Fidalgo Prieto, J. Illán
Rok vydání: 2004
Předmět:
Zdroj: Investigo. Repositorio Institucional de la Universidade de Vigo
Universidade de Vigo (UVigo)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
ISSN: 0021-9045
DOI: 10.1016/j.jat.2004.01.004
Popis: 27 pages, no figures.-- MSC1991 code: Primary 42C05. MR#: MR2045538 (2005c:41024) Zbl#: Zbl 1065.42019 We study Hermite–Padé approximation of the so-called Nikishin systems of functions. In particular, the set of multi-indices for which normality is known to take place is considerably enlarged as well as the sequences of multi-indices for which convergence of the corresponding simultaneous rational approximants takes place. These results are applied to the study of the convergence properties of simultaneous quadrature rules of a given function with respect to different weights. The work of U.F.P. and G.L.L. was partially supported by Dirección General de Enseñanza Superior under Grant BFM2003-06335-C03-02 and of G.L.L. by INTAS under Grant INTAS 03-51-6637. Publicado
Databáze: OpenAIRE