A simple scheme for the calculation of the anomalous dimensions of composite operators in the 1/N expansion
Autor: | S.E. Derkachov, A.N. Manashov |
---|---|
Rok vydání: | 1998 |
Předmět: |
High Energy Physics - Theory
Physics Nuclear and High Energy Physics Sigma model Nuclear Theory FOS: Physical sciences Order (ring theory) 1/N expansion Nonlinear system High Energy Physics - Theory (hep-th) Conformal symmetry Simple (abstract algebra) Scheme (mathematics) Nuclear Experiment Critical exponent Mathematical physics |
Zdroj: | Nuclear Physics B. 522:301-320 |
ISSN: | 0550-3213 |
DOI: | 10.1016/s0550-3213(98)00103-5 |
Popis: | The simple method for the calculating of the anomalous dimensions of the composite operators up to 1/N^2 order is developed. We demonstrate the effectiveness of this approach by computing the critical exponents of the $(\otimes\vec\Phi)^{s}$ and $\vec\Phi\otimes(\otimes\vec\partial)^{n}\vec\Phi$ operators in the 1/N^2 order in the nonlinear sigma model. The special simplifications due to the conformal invariance of the model are discussed. Comment: 20 pages, Latex, uses Feynman.sty |
Databáze: | OpenAIRE |
Externí odkaz: |