Decay of geometry for Fibonacci critical covering maps of the circle
Autor: | Edson Vargas, Eduardo Colli, Marcio Lima do Nascimento |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
Popis: | We study the growth of D f n ( f ( c ) ) when f is a Fibonacci critical covering map of the circle with negative Schwarzian derivative, degree d ⩾ 2 and critical point c of order l > 1 . As an application we prove that f exhibits exponential decay of geometry if and only if l ⩽ 2 , and in this case it has an absolutely continuous invariant probability measure, although not satisfying the so-called Collet–Eckmann condition. |
Databáze: | OpenAIRE |
Externí odkaz: |