On the Markus conjecture in convex case

Autor: Kyeonghee Jo, Inkang Kim
Rok vydání: 2021
Předmět:
Zdroj: Annals of Global Analysis and Geometry. 60:911-940
ISSN: 1572-9060
0232-704X
DOI: 10.1007/s10455-021-09796-z
Popis: In this paper, we show that any convex affine domain with a nonempty limit sets on the boundary under the action of the identity component of the automorphism group cannot cover a compact affine manifold with a parallel volume, which is a positive answer to the Markus conjecture for convex case. Consequently, we show that the Markus conjecture is true for convex affine manifolds of dimension $\leq 5$.
27 pages
Databáze: OpenAIRE