On the Markus conjecture in convex case
Autor: | Kyeonghee Jo, Inkang Kim |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Annals of Global Analysis and Geometry. 60:911-940 |
ISSN: | 1572-9060 0232-704X |
DOI: | 10.1007/s10455-021-09796-z |
Popis: | In this paper, we show that any convex affine domain with a nonempty limit sets on the boundary under the action of the identity component of the automorphism group cannot cover a compact affine manifold with a parallel volume, which is a positive answer to the Markus conjecture for convex case. Consequently, we show that the Markus conjecture is true for convex affine manifolds of dimension $\leq 5$. 27 pages |
Databáze: | OpenAIRE |
Externí odkaz: |