Photoinduced Axial Ligation and Deligation Dynamics of Nonplanar Nickel Dodecaarylporphyrins
Autor: | Igor V. Sazanovich, Craig J. Medforth, Jack Fajer, Kevin M. Smith, Jennifer L. Retsek, Dewey Holten, Vladimir S. Chirvony, Charles Michael Drain, Daniel J. Nurco, Christine Kirmaier |
---|---|
Rok vydání: | 2003 |
Předmět: |
Models
Molecular Steric effects Metalloporphyrins Photochemistry Ligand Spectrum Analysis Aromaticity General Chemistry Biochemistry Catalysis Dissociation (chemistry) Photoexcitation Kinetics chemistry.chemical_compound Colloid and Surface Chemistry chemistry Nickel Alkanes Pyridine Solvents Piperidine Ground state |
Zdroj: | Journal of the American Chemical Society. 125:9787-9800 |
ISSN: | 1520-5126 0002-7863 |
DOI: | 10.1021/ja020611m |
Popis: | The ground- and excited-state metal-ligand dynamics of nonplanar nickel(II) 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphyrin (NiDPP) and two fluorinated analogues (NiF(20)DPP and NiF(28)DPP) have been investigated using static and time-resolved absorption spectroscopy in toluene and in ligating media that differ in basicity, aromaticity, and steric encumbrance. Because of the electronic and steric consequences of nonplanarity, NiDPP does not bind axial ligands in the ground state, but metal coordination does occur after photoexcitation with multistep dynamics that depend on the properties of the ligand. Following the structural relaxations that occur in all nickel porphyrins within approximately 10 ps, ligand binding to photoexcited NiDPP is progressively longer in pyridine, piperidine, and 3,5-lutidine (25-100 ps) but does not occur at all in 2,6-lutidine in which the ligating nitrogen is sterically encumbered. The transient intermediate that is formed, which nominally could be either a five- or six-coordinate species, also has a ligand-dependent lifetime (200-550 ps). Decay of this intermediate occurs partially via ligand release to re-form the uncoordinated species, in competition with binding of the second axial ligand and/or conformational/electronic relaxations (of a six-coordinate intermediate) to give the ground state of the bis-ligated photoproduct. The finding that the photoproduct channel principally depends on ligand characteristics along with the time-evolving spectra suggests that the transient intermediate may involve a five-coordinate species. In contrast to NiDPP, the fluorinated analogues NiF(20)DPP and NiF(28)DPP do coordinate axial ligands in the ground state but eject them after photoexcitation. Collectively, these results demonstrate the sensitivity with which the electronic and structural characteristics of the macrocycle, substituents, and solvent (ligands) can govern the photophysical and photochemical properties of nonplanar porphyrins and open new avenues for exploring photoinduced ligand association and dissociation behavior. |
Databáze: | OpenAIRE |
Externí odkaz: |