Exploiting Photoionization Reflectron Time-of-Flight Mass Spectrometry to Explore Molecular Mass Growth Processes to Complex Organic Molecules in Interstellar and Solar System Ice Analogs

Autor: Andrew M. Turner, Ralf I. Kaiser
Rok vydání: 2020
Předmět:
Zdroj: Accounts of Chemical Research. 53:2791-2805
ISSN: 1520-4898
0001-4842
Popis: ConspectusThis Account presents recent advances in our understanding on the formation pathways of complex organic molecules (COMs) within interstellar analog ices on ice-coated interstellar nanoparticles upon interaction with ionizing radiation exploiting reflectron time-of-flight mass spectrometry (ReTOF-MS) coupled with tunable vacuum ultraviolet (VUV) single photon ionization (PI) and resonance enhanced multiphoton ionization (REMPI) of the subliming molecules during the temperature-programmed desorption (TPD) phase. Laboratory simulation experiments provided compelling evidence that key classes of complex organics (aromatic hydrocarbons, alcohols, ethers, aldehydes, enols, ketones, and carboxylic acids) can be synthesized upon exposure of astrophysically relevant model ices to ionizing radiation within and throughout the ices at temperatures as low as 5 K.Molecular mass growth processes can be initiated by suprathermal or electronically excited reactants along with barrierless radical-radical recombination if both radicals hold a proper recombination geometry. Methyl (CH3), amino (NH2), hydroxyl (OH), ethyl (C2H5), vinyl (C2H3), ethynyl (C2H), formyl (HCO), hydroxycarbonyl (HOCO), hydroxymethyl (CH2OH), methoxy (CH3O), and acetyl (CH3CO) represent readily available reactants for radical-radical recombinationwithin the ices. Reactive singlet species were found to insert without barrier into carbon-hydrogen and carbon-carbon single bonds (carbene) leading to an extension of the carbon chain and may add to carbon-carbon double bonds (carbene, atomic oxygen) forming cyclic reaction products. These galactic cosmic ray-triggered nonequilibrium pathways overcome previous obstacles of hypothesized thermal grain-surface processes and operate throughout the ice at 5 K. Our investigations discriminate between multiple structural isomers such as alcohols/ethers, aldehydes/enols, and cyclic/acyclic carbonyls. These data provide quantitative, isomer selective input parameters for a cosmic ray-dictated formation of complex organics in interstellar ices and are fully able to replicate the astronomical observations of complex organics over typical lifetimes of molecular clouds of a few 106 to 107 years. Overall, PI-ReTOF-MS revealed that the processing of astrophysically relevant ices can lead to multifaceted mixtures of organics reaching molecular weights of up to 200 amu. Further advances in laboratory techniques beyond the FTIR-QMS limit are clearly desired not only to confidently assign detection in laboratory ice analog experiments of increasingly more complex molecules of interest but also from the viewpoint of future astronomical searches in the age of the Atacama Large Millimeter/submillimeter Array (ALMA).
Databáze: OpenAIRE