A Meta-analysis on Classification Model Performance in Real-World Datasets: An Exploratory View

Autor: David Gómez Guillén, Alfonso Rojas Espinosa
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica, Universitat Politècnica de Catalunya. GRXCA - Grup de Recerca en Xarxes de Comunicacions Cel·lulars i Ad-hoc
Rok vydání: 2017
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 1087-6545
0883-9514
DOI: 10.1080/08839514.2018.1430993
Popis: The No Free Lunch (NFL) Theorem imposes a theoretical restriction on optimization algorithms and their equal average performance on different problems, under some particular assumptions. Nevertheless, when brought into practice, a perceived “ranking” on the performance is usually perceived by engineers developing machine learning applications. Questions that naturally arise are what kinds of biases the real world has and in which ways can we take advantage from them. Using exploratory data analysis (EDA) on classification examples, we gather insight on some traits that set apart algorithms, datasets and evaluation measures and to what extent the NFL theorem, a theoretical result, applies under typical real-world constraints.
Databáze: OpenAIRE