Engineering Hybrid Epitaxial InAsSb/Al Nanowire Materials for Stronger Topological Protection

Autor: Erik Johnson, Brian Tarasinski, Charles Marcus, Thomas Kanne, Michael Wimmer, Joachim E. Sestoft, Daniel Sherman, Aske Nørskov Gejl, Jeremy S. Yodh, Jesper Nygård, Peter Krogstrup, Thomas Jespersen, Merlin von Soosten, Mingtang Deng
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Sestoft, J E, Kanne, T, Gejl, A N, von Soosten, M, Yodh, J S, Sherman, D, Tarasinski, B, Wimmer, M, Johnson, E, Deng, M, Nygard, J, Jespersen, T S, Marcus, C M & Krogstrup, P 2018, ' Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection ', Physical Review Materials, vol. 2, no. 4, 044202 . https://doi.org/10.1103/PhysRevMaterials.2.044202
Physical Review Materials
Popis: The combination of strong spin-orbit coupling, large $g$-factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zincblende InAs$_{1-x}$Sb$_{x}$ nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies \cite{winkler2016topological}. We show that the epitaxial InAsSb/Al interfaces allows for a hard induced superconducting gap and 2$e$ transport in Coulomb charging experiments, similar to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective $g$-factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zincblende structure.
10 pages and 5 figures
Databáze: OpenAIRE